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Abstract

We present The Matrix, the first foundational realistic world
simulator capable of generating infinitely long 720p high-
fidelity real-scene video streams with real-time, respon-
sive control in both first- and third-person perspectives,
enabling immersive exploration of richly dynamic environ-
ments. Trained on limited supervised data from AAA games
like Forza Horizon 5 and Cyberpunk 2077, complemented
by large-scale unsupervised footage from real-world set-
tings like Tokyo streets, The Matrix allows users to tra-
verse diverse terrains—deserts, grasslands, water bodies,
and urban landscapes—in continuous, uncut hour-long se-
quences. With speeds of up to 16 FPS, the system supports
real-time interactivity and demonstrates zero-shot general-
ization, translating virtual game environments to real-world
contexts where collecting continuous movement data is of-
ten infeasible. For example, The Matrix can simulate a
BMW X3 driving through an office setting—an environment
present in neither gaming data nor real-world sources. This
approach showcases the potential of AAA game data to ad-
vance robust world models, bridging the gap between sim-
ulations and real-world applications in scenarios with lim-
ited data. All the codes, data, and model checkpoints in this
paper will be open sourced.

“This is the world that you know; the world as it was at
the end of the 20th century. It exists now only as part of
a neural-interactive simulation that we call the Matrix.”

Morpheus to Neo

1. Introduction
Neural-interactive simulation, a concept popularized by The
Matrix (1999), envisions a world fully constructed by AI
to replicate 20th-century human society. This paper takes
an initial step toward realizing this vision by developing a

Figure 1. The Matrix is a foundational realistic world simula-
tor capable of generating infinitely long 720p high-fidelity real-
scene video streams with real-time, precise moving control. Click
to play with Adobe Acrobat Reader! The upper 1-minute demo
may need flushing time.

world model that enables neural networks to ‘dream’ vi-
sually authentic environments. The result is an infinite-
horizon, high-resolution (720p) simulation that supports
real-time (8 - 16 FPS) interactive exploration across di-
verse landscapes, including deserts, grasslands, water ter-
rains, and urban settings. Responding to real-time control
signals, the world model predicts future frames in these en-
vironments in a streaming and auto-regressive fashion.

World models offer a promising solution to the over-
whelming costs of AAA game development, which can eas-
ily run into tens or even hundreds of millions of dollars.
Traditional game creation depends on engines such as Unity
3D, Unreal Engine, and Blender, each requiring substantial
expertise, intensive asset preparation, and meticulous hy-
perparameter tuning. Furthermore, games built with these
engines are often limited in reusability, as each new title de-
mands a comprehensive redesign. In contrast, data-driven
world models tackle these issues by minimizing the need
for manual configuration, simplifying development work-
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flows, and boosting scalability across projects.
Despite extensive research in world models [30], key

challenges remain. First, prior studies have predominantly
focused on non-AAA video games, such as Atari [1, 10, 31],
Mario [25], Minecraft [5, 11], Counter-Strike: Global Of-
fensive (CS:GO) [1], and DOOM [36], which fall short in
replicating real-world fidelity. Second, current video gen-
eration techniques, like Sora [23], are constrained to short
sequences of about 1 minute, forcing existing world models
to assemble independently generated clips with noticeable
transitions. Finally, achieving real-time generation remains
a major hurdle. For example, state-of-the-art 2D platformer
game generator Genie [2] runs as slow as 1 FPS. This paper
addresses these limitations by introducing the first scalable,
high-fidelity (1280×720 pixels) world model in real time
that enhances simulation realism and bridges the gap be-
tween virtual environments and reality. Notably, our world
model is the first with strong domain generalization and
real-time control. For example, our foundation model al-
lows us to control BMW X3 driving through an indoor set-
ting or in the sea—an environment present in neither gam-
ing data nor real-world sources.

1.1. Our Contributions

Our contributions are as follows:

• We introduce The Matrix, the first foundational simula-
tor for realistic worlds, capable of generating infinitely
long, high-fidelity 720p real-scene video streams with
real-time, interactive controls and strong domain gener-
alization. The model is light and consists of 2.7B param-
eters.

• At the core of The Matrix is a novel diffusion technique,
the Shift-Window Denoising Process Model (Swin-
DPM), enabling pre-trained DiT models [24] to extrapo-
late seamlessly for smooth, continuous, and infinitely ex-
tendable video creation. This technique holds potential
for broader applications in long-form video generation.

• Additionally, we introduce GameData, a platform that
autonomously captures paired in-game states—extracted
from CPU memory—alongside corresponding video
frames, significantly reducing labeling costs and com-
plexity. This platform produces Source, a new training
dataset for world models with action-frame paired data.

1.2. Technical Advantages of The Matrix

Tab. 1 highlights a comparison between The Matrix and
other game generation models across six key features. Our
work advances the state-of-the-art of world models in the
following aspects:

• Infinite Video Generation: The Matrix generates con-
sistent, infinitely long video sequences using a streaming,
auto-regressive approach.

• High-Quality Rendering: The Matrix delivers AAA-
level, realistic rendering at a resolution of 1280× 720.

• Real-Time, Frame-Level Control: The Matrix operates
with speeds of 8 - 16 FPS, providing real-time, frame-
level control for interactive applications.

• Domain Generalization: Trained with small amounts of
supervised AAA game data and large amounts of unsu-
pervised internet videos, The Matrix achieves strong do-
main generalization to real-world settings.

2. Related Work

World Model for Agent Learning. Developing world
models for training agents has been a long-standing re-
search focus, aimed at enhancing policy learning within
simulated environments rather than solely achieving high-
fidelity reconstructions of observations. This research in-
volves two primary stages: 1) modeling the training en-
vironment by reconstructing observations, rewards, and
continuation signals, often through a recurrent state-space
model; and 2) utilizing this model to predict future states,
enabling reinforcement learning to optimize robust pol-
icy functions. Studies indicate that this method provides
sample efficiency gain of over 1000% compared to di-
rectly learning policies from real environments, shows re-
silience across diverse domains, and can outperform fine-
tuned expert agents on a range of benchmarks and data bud-
gets [11]. Key contributions in this area include Recurrent
World Models [8], Dreamer (v1 [9], v2 [10], and v3 [11]),
TD-MPC (v1 [12] and v2 [13]), DayDreamer [37], Safe-
Dreamer [18], and MuDreamer [3]. Notably, MuZero [31]
runs the self-play of Monte Carlo tree search to build world
models for Atari, Go, chess and shogi, without external
data.

World Simulation. Distinct from world models designed
for agent learning, another research direction emphasizes
world simulation, focusing on human interaction with neu-
ral networks through high-quality rendering, robust control,
and strong domain generalization to real-world scenarios.
This research explores two types of control: video-level and
frame-level. In video-level control, a control signal is given
at the start, and the model generates a responsive video
sequence; notable examples include UniSim [39], Pan-
dora [38], GameGen-X [4], MicroVGG [25], and GAIA-
1 [16]. To approximate continuous control, this approach
often stitches together independently generated clips, which
may result in visible transitions. In contrast, frame-
level control provides fine-grained adjustments every few
frames, enabling more precise, responsive interactions sim-
ilar to gameplay, as seen in examples like Genie [2], DIA-
MOND [1], GameNGen [36], and Oasis [5]. Prior work in
world simulation has typically focused on one of three as-
pects—video length, high resolution, or domain generaliza-
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Table 1. Comparison of recent generative models for game simulation. The Matrix distinguishes itself as a foundation model capable of
generating infinitely long videos with AAA game quality, high resolution, frame-level real-time control, and robust domain generalization.
Here, * indicates concurrent work with The Matrix, and supervised/unsupervised refers to the video data with/without true control signal.

Feature Genie DIAMOND MarioVGG* GameNGen* Oasis* GameGen-X* The Matrix
Video Length 2s Infinite 6 Frames Infinite Infinite 4s–16s Infinite

Training Corpus 2D Games Atari Mario DOOM Minecraft AAA Games AAA Games (supervised, small)
(unsupervised) CS:GO Internet Videos (unsupervised, large)

Resolution 360p 280× 150 64× 48 240p 720p 720p 720p
Control Frame-Level Frame-Level Video-Level Frame-Level Frame-Level Video-Level Frame-Level
Real-Time No Yes No Yes Yes No Yes
Control Generalization Yes No No No No No Yes
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Figure 2. The training process of The Matrix begins with a pre-
trained video DiT backbone. First, the Interactive Module is
warmed up using Synthesized Observations of Unreal Rendered
Contextual Environments data with unsupervised LoRA to make
subsequent training focus on movement, not visuals. Then, we
train the Interactive Module for precise frame-level control. Swin-
DPM enables infinite-length generation, and Stream Consistency
Model is introduced to accelerate sampling to real-time speeds.

tion—without addressing all three simultaneously. Table 1
presents a comparison between The Matrix and prior works.
The Matrix uniquely stands out as a foundation model capa-
ble of generating infinitely long, AAA-quality videos with
high resolution, frame-level real-time control, and strong
generalization to real-world contexts.

3. Methods

Achieving granular control is notoriously challenging,
as labeling actions at the frame level is typically cost-
prohibitive. To address this, we develop the GameData
platform, which autonomously captures paired data of in-
game states (extracted directly from CPU memory) along-
side corresponding video frames, significantly reducing la-
beling costs and complexity. Additionally, The Matrix in-
corporates an advanced Interactive Module that learns and
generalizes game movement interactions from a limited
amount of labeled data combined with extensive unlabeled
data from both games and real-world environments. This
enables The Matrix to deliver exceptional accuracy across
diverse scenarios, while maintaining robust performance in
the gaming domain.

Generating high-quality, real-time, and generalizable
video simulations for infinite sequences presents additional
technical challenges, often forcing previous simulators to
compromise on one or more essential aspects. The Matrix

overcomes these limitations by adapting the world model
from a pre-trained video Diffusion Transformer (DiT)
model [24], leveraging its extensive pre-existing knowl-
edge and generation quality. To enable infinite-length gen-
eration, The Matrix introduces a novel diffusion approach,
the Shift-Window Denoising Process Model (Swin-DPM),
which allows the DiT model to extrapolate for smooth, con-
tinuous, and indefinitely long video creation. Finally, to
achieve real-time efficiency, we fine-tune a Stream Consis-
tency Model (SCM), accelerating inference to real-time.

Video DiT Backbone. As a preliminary, we introduce
the video DiT backbone, adapted from the publicly avail-
able DiT models [41]. It employs a 3D Variational Auto-
Encoder (VAE) to encode T × p video frame into T video
tokens. The backbone consists of 32 attention blocks, fol-
lowed by a linear output head with LayerNorm. Each at-
tention block includes a self-attention layer operating on
network features, a cross-attention layer linking conditions
with self-attention outputs, and an FFN layer composed of
two linear layers with a GELU activation [14] in between.
See Appendix Section A.1 for further details.

3.1. Model Components
The Matrix comprises three main components: a) an In-
teractive Module that interprets user intentions (e.g., key-
board inputs) and integrates them into video token genera-
tion; b) a Shift-Window Denoising Process Model (Swin-
DPM) that enables infinite-length video generation; and c)
a Stream Consistency Model (SCM) that accelerates sam-
pling to achieve real-time performance. As shown in Fig. 2,
the model is fine-tuned from a pre-trained video DiT model
through a three-stage process: first, we fix the DiT model
parameters and train the Interactive Module; next, we train
the Interactive Module and the DiT together following the
Swin-DPM; finally, we optimize an SCM to accelerate in-
ference to real-time speeds. The first two stages leverage
both labeled gaming and unlabeled internet video data to en-
hance generalization, while the final SCM training focuses
on labeled gaming data to reduce optimization complexity.

Interactive Module. The Interactive Module consists of an
Embedding block (see Fig. 3a) and a cross-attention layer.
Its primary function is to translate keyboard inputs into nat-
ural language that guides video generation. For example,
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pressing ‘W’ is interpreted as “The car is driving forward”
in the Forza Horizon 5 scenario, or as “The man is moving
forward and looking up” when combined with an upward
mouse movement in Cyberpunk 2077. For unlabeled real
or game data, we apply a default description: “The camera
is moving in an unknown way.” To enhance robustness, we
randomly replace labeled keyboard inputs with this default
sentence during training with probability q = 0.1.

To prepare for training, we first warmup the base DiT
model for a few epochs using collected game and real-world
data, fine-tuning a LoRA weight [17]. This process ensures
that the Interactive Module focuses on learning interactions
and movement patterns rather than simply fitting the video.
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(a) The Interactive Module: After every two DiT blocks, the mod-
ule merges the keyboard inputs into the video token feature through a
Causal Cross-Attention Layer, where each keyboard input is limited
to influence only the current and subsequent ω tokens. Here, every p
frames are condensed into a single token.
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(b) Shift-Window Denoising Process Model: The Swin-DPM trans-
forms the traditional diffusion process into a streaming one, where T
video tokens with different noise levels are denoised simultaneously.
After each token is fully denoised and dequeued for decoding, a new
token of pure noise is added to the queue. The dequeued token is then
copied to the cache, allowing it to continue participating in attention
computations until the next token is dequeued.

Figure 3. Main components of The Matrix.
Once translated, these natural language descriptions are

processed by a T5 encoder [27] and transformed into a
vector embedding through two linear layers and a SiLU
layer [6] between them. This vector embedding is then con-
catenated with its corresponding video token and the next ω

video tokens, where ω is a pre-defined causal relation range,
typically set to ω = 4, as is shown in Fig. 3a.

We perform this cross-attention operation each time the
DiT model completes an odd-numbered self-attention step,
enabling effective information exchange across frames and
achieving precise, frame-level control for video generation.

Shift-Window Denoising Process Model. Typical DiT
models are limited to generating only a few seconds of
video, even when substantial spatial and temporal compres-
sion is applied via VAEs. This limitation is largely due to
the high computational cost and memory demands of at-
tention mechanisms over extended time durations. To ad-
dress this, it becomes crucial to assume that temporal de-
pendencies are confined within a limited time window, be-
yond which attention computations are unnecessary. Build-
ing on this idea, we propose the Shift-Window Denoising
Process Model (Swin-DPM), which leverages a sliding tem-
poral window to manage dependencies effectively and en-
ables the generation of long or even infinite videos by pro-
ducing tokens with a stride of s = 1. As is shown in Fig. 3b,
within each window, a queue of video tokens undergoes
denoising at various noise levels. After k denoising steps
(where k × T is the number of diffusion solver steps), the
leftmost, lowest-noisy token is dequeued into a cache. To
maintain the queue length, a new token with Gaussian noise
will be then added to the rightmost position. Each cached
token is re-appended to the window’s token queue at noise
level 0 until the next token is cached, allowing it to continue
participating in denoising and ensuring continuity between
different windows. The network of Swin-DPM is fine-tuned
from a pre-trained DiT model. During training, we sample
2w video tokens, where w is the window size. We usually
set w = T . The first w tokens are used solely for warming
up Swin-DPM and do not participate in backpropagation;
loss is computed only on the last w tokens. At inference
time, we follow the same setup: the first w tokens are for
warmup and are discarded, with the generated video start-
ing from the (w + 1)-th token.

Stream Consistency Model. After extending the DiT
model to Swin-DPM, we further address the need for
achieving real-time rendering of the simulated world. A
promising approach is to combine Swin-DPM with Con-
sistency Models [32, 33], a leading method for acceler-
ating diffusion. We use the Stream Consistency Model
(SCM) [22], which distills the original diffusion process
and its class-free guidance into a four-step consistency
model while incorporating the denoising window design
from Swin-DPM. The training procedure is illustrated in
Fig. 2. This integration results in a 10 - 20× acceleration
in inference speed, reaching a rendering rate of 8 - 16 FPS.
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Table 2. Ablation study on the components of The Matrix. Note that there is a trade-off between inference speed, control precision,
and rendering quality. Move-LPIPS and Move-PSNR are computed between the generated videos and test videos with ground truth
movements.

Component Scene #Params Inference Speed FVD↓ FID↓ CLIP↑ Move-LPIPS↓ Move-PSNR↑
DiT Backbone - 2.3B 48 frames / 34 Seconds 1016.30 318.10 0.30 - -

+ Warmup
Cyberpunk 2077 2.3B 64 frames / 34 Seconds 1429.45 183.24 0.28 0.125 27.80

DROID 2.3B 48 frames / 34 Seconds 1133.16 224.98 0.29 0.191 27.72
Forza Horizon 5 2.3B 48 frames / 34 Seconds 1891.67 141.11 0.31 0.128 26.89

+ Interactive Module
Cyberpunk 2077 2.7B 48 frames / 55 Seconds 1112.49 173.31 0.28 0.129 28.24

DROID 2.7B 48 frames / 55 Seconds 1200.82 237.66 0.30 0.180 27.90
Forza Horizon 5 2.7B 48 frames / 55 Seconds 1211.30 119.20 0.27 0.125 28.98

+ Swin-DPM Forza Horizon 5 2.7B 0.8 FPS 1651.50 163.27 0.24 0.113 29.90
+ SCM Forza Horizon 5 2.7B 8 - 16 FPS 1936.79 153.80 0.23 0.109 29.73

Memory Raw Signal

OBS ReShadeCheat Engine Key Extractor

Align

ActionsInner States

Filter

High-Quality (Action, Frame) Pairs

HQ Game Frames

Data

Software

OS

Figure 4. The GameData Platform that creates the Source
dataset. It uses CheatEngine to capture in-game status from CPU
memory and filter out unsatisfactory frames, such as those with
stuck characters or irregular movements. Reshade removes game
UIs and HUDs to ensure a more consistent data distribution. A
Key Extractor then captures keyboard inputs and aligns them with
frames recorded by OBS.

3.2. Construction of the Source Dataset

To train The Matrix model, we construct the Synthesized
Observations of Unreal Rendered Contextual Environments
(Source) dataset, which consists of two components: syn-
thetic game data from Unreal Engine and real-world, un-
labeled footage. The synthetic game data, collected using
the GameData Platform, serves as supervised training data
for precise motion control, while the real-world footage im-
proves the model’s visual quality and generalization to real-
world scenarios.

After collection, the data is segmented into 6-second
clips of continuous scenes and captioned using GPT-
4o [19], resulting in a dataset of 750k labeled samples and
1.2 million unlabeled samples, all with 60 FPS. The labeled
game data is further refined to ensure a balanced distribution
of all possible game states. For more details on the dataset,
see Appendix Section B.2.

The GameData Platform. As shown in Fig. 4, the Game-
Data Platform is built on open-source tools: Cheat Engine
software [7], the Reshade plugin [29] for DirectX, and OBS
Recording software [28]. Cheat Engine is used to capture
in-game world status data, such as character (x, y, z) po-

sitions and camera movements. This status data is aligned
with recorded video frames to create per-frame action-video
pairs and is also used to check if the character or camera is
stuck and requires a reboot. We employ the Reshade plugin
to remove all game UIs and HUDs and to standardize shad-
ing styles, providing a more consistent, low-complexity
data source. Data for Forza Horizon 5 is collected using
autonomous scripts with random walking algorithms, while
Cyberpunk 2077 data is gathered manually with human op-
erators running the GameData Platform. See Appendix Sec-
tion B.1 for more details on the GameData Platform.

4. Experiments

Training Details. We train The Matrix on the Source
dataset, using a pre-trained 2.3B parameter DiT model as
the backbone, which generates 4 video tokens per second,
each decoded into 4 frames by the VAE decoder [21]. To
match this generation rate, we downsample the videos and
keyboard inputs in the Source dataset accordingly. For all
training cases, we first warm up the base DiT model on un-
labeled Source data for 20,000 steps with a batch size of 32.
Following this, we train the Interactive Module on labeled
Source data for an additional 20,000 steps with the same
batch size, introducing another 0.4B parameter. Next, we
fine-tune The Matrix model using Swin-DPM over 60,000
steps, also with a batch size of 32. For the final Consistency
Model distillation, we use the Swin-DPM checkpoints as
a teacher model and train the student network for 10,000
steps with a batch size of 32. More details can be found in
Appendix Section A.2.

Metrics. We evaluate performance using metrics for both
general visual quality and movement control precision. For
general visual quality, we use Fréchet Inception Distance
(FID) [15], Fréchet Video Distance (FVD) [35], and CLIP
Score [26] to assess text alignment. All metrics are evalu-
ated on 2,048 seconds of randomly generated videos. To
evaluate movement control precision, we generate 2,048
seconds of video based on keyboard inputs and text prompts
from a fixed test set, then measure the Peak Signal-to-Noise
Ratio (Move-PSNR) [34] and Learned Perceptual Image
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Figure 5. The results demonstrate frame-level precise control achieved by the Interactive Module across diverse scenes, weather conditions,
and movement modes. Click the first frame to play with Adobe Acrobat Reader!

Patch Similarity (Move-LPIPS) [40] between the generated
videos and real videos with ground truth movements.

4.1. Precise Frame-Level Interactions
In this section, we evaluate the effectiveness of the Inter-
active Module by testing its performance in three distinct
scenarios: the Forza Horizon 5 car driving scenario, the Cy-
berpunk 2077 city walking scenario, and a robotic arm task
from the DROID dataset [20]. We select 50,000 6-second
clips from the DROID dataset, along with per-frame action
labels of joint angles for seven joints, to form the training
dataset. More details can be found in Appendix Section B.3.
The third scenario is specifically designed to assess the ef-
fectiveness of The Matrix in embodied AI tasks. For all sce-
narios, we follow the same training strategy: starting with
a pre-trained DiT model, we first perform a warm-up us-
ing unlabeled data, followed by fine-tuning the Interactive
Module with labeled data.

Qualitative Results. Fig. 5 illustrates examples of The Ma-
trix’s generated outputs across all scenarios. The Matrix
demonstrates the ability to create vivid and dynamic worlds,
accurately reflecting user interactions and intentions. It also
models the physical behaviors within these environments,

such as dust being kicked up when a car drives through a
dry desert, or water splashing when it travels through a river.
Additional examples of The Matrix’s generation capabilities
are provided in Appendix Section C.1.

Quantitative Results. The last two columns of Tab. 2
present the quantitative evaluation of interaction precision,
using LPIPS and PSNR metrics. The results demonstrate
that Interactive Module significantly improves control pre-
cision, and this enhancement is maintained throughout the
subsequent Swin-DPM and SCM processes.

4.2. Infinete-Horizon World Generation

Traditional world simulators focused on precise control of-
ten rely on small, auto-regressive generators trained from
scratch to minimize the significant memory and time costs
associated with pre-trained DiT models. However, this ap-
proach compromises visual quality and limits the full po-
tential of world simulators. In this work, we introduce the
first world simulator leveraging pre-trained video diffusion
models, enabling infinite-length world generation with real-
time rendering capabilities. In this section, we present our
evaluation of these advancements.
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(a) Long 1-minute video generated by The Matrix.

(b) A continuous 2.5-minute video generated by The Matrix, spanning multiple diverse scenes controlled through DiT text prompts.
Figure 6. Long worlds generation results by The Matrix. More examples are included in Supplementary Videos.

Generating Infinitely Long Videos. Fig. 6 showcases ex-
amples of generating 1-minute long worlds across diverse
scenarios, including desert, river, grassland, snow, and day-
to-night transitions. During generation, we switch the DiT
prompt to adapt the environment, as shown in Fig. 6b. The
Matrix’s capability extends beyond this; it can generate
truly infinite-length videos, with additional half-hour ex-
amples available in Supplementary Videos. Tab. 2 reports

the video quality and control precision of The Matrix af-
ter training with Swin-DPM. While some visual quality is
sacrificed, control precision remains strong, and the visual
quality still surpasses previous world simulators, achieving
a realistic AAA-level standard.

Real-Time Rendering. We further investigate integrating
SCM with The Matrix. As reported in Tab. 2, this integra-
tion highlights The Matrix’s real-time rendering capability,
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with a slight trade-off in visual quality and minimal loss in
control precision, while significantly improving rendering
speed from 0.8 FPS to 8 - 16 FPS.

4.3. Generalization to Out-of-Distribution Worlds
In addition to superior visual quality, a key advantage of us-
ing pre-trained video DiTs is their inherent ability to gener-
alize across diverse scenes. We observe impressive general-
ization in The Matrix, showcasing the potential of future re-
search into building world simulators with pre-trained DiTs.

Generating Unseen Scenes. With The Matrix, we can con-
trol a car in previously unseen scenes by describing the sce-
nario in the prompt. The first two rows of Fig. 7a demon-
strate this capability, where the car is driven through indoor
environments, which were not part of the Source dataset.

Interacting with Unseen Objects. A more remarkable fea-
ture is The Matrix’s ability to generalize interaction with
real-world objects. As shown in the last two rows of Fig. 7a,
by specifying a human as the center object in the DiT
prompt, we can make the person move in response to key-
board inputs.

Generating Long Videos without Moving Control.
Though The Matrix is trained on the Source dataset, it can
also function as a general long video generator. By dis-
abling the Interactive Module and using only the DiT back-
bone trained after Swin-DPM, The Matrix can generate long
videos corresponding to ordinary prompts. Fig. 7b shows
such an example, further proving The Matrix’s strength as a
realistic world simulator.

5. Conclusion
We introduce The Matrix, a real-world simulator capable of
generating infinitely long, high-fidelity video streams with
precise real-time control. Trained on a blend of AAA game
data and real-world footage, The Matrix supports immersive
exploration of dynamic environments, with zero-shot gen-
eralization to unseen scenarios. Operating at 8 - 16 FPS,
it enables continuous, interactive simulations across diverse
terrains, bridging the gap between virtual and real-world ap-
plications. This work highlights the potential of using game
data to build robust world models with minimal supervi-
sion, and showcases the power of pre-trained video DiTs in
enabling realistic, large-scale simulations.
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(a) The Matrix can generalize its precise movement control to unlabeled scenes and objects, such as driving indoors or making people move as instructed.
Click the first frame to play with Adobe Acrobat Reader!

(b) The Matrix can also generate long, general videos by disabling the Interactive Module, acting as a powerful video generator.
Figure 7. Generalization ability of The Matrix on unseen scenes and objects.
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